17#define TEMPERATURE_K_ env_data[0]
18#define PRESSURE_PA_ env_data[1]
20#define NUM_REACT_ int_data[0]
21#define NUM_PROD_ int_data[1]
22#define K0_A_ float_data[0]
23#define K0_B_ float_data[1]
24#define K0_C_ float_data[2]
25#define KINF_A_ float_data[3]
26#define KINF_B_ float_data[4]
27#define KINF_C_ float_data[5]
28#define FC_ float_data[6]
29#define N_ float_data[7]
30#define SCALING_ float_data[8]
31#define CONV_ float_data[9]
32#define RATE_CONSTANT_ (rxn_env_data[0])
33#define NUM_INT_PROP_ 2
34#define NUM_FLOAT_PROP_ 10
35#define REACT_(x) (int_data[NUM_INT_PROP_ + x] - 1)
36#define PROD_(x) (int_data[NUM_INT_PROP_ + NUM_REACT_ + x] - 1)
37#define DERIV_ID_(x) int_data[NUM_INT_PROP_ + NUM_REACT_ + NUM_PROD_ + x]
38#define JAC_ID_(x) int_data[NUM_INT_PROP_ + 2 * (NUM_REACT_ + NUM_PROD_) + x]
39#define YIELD_(x) float_data[NUM_FLOAT_PROP_ + x]
49 int *int_data = rxn_int_data;
50 double *float_data = rxn_float_data;
52 for (
int i_ind = 0; i_ind <
NUM_REACT_; i_ind++) {
53 for (
int i_dep = 0; i_dep <
NUM_REACT_; i_dep++) {
56 for (
int i_dep = 0; i_dep <
NUM_PROD_; i_dep++) {
73 int *rxn_int_data,
double *rxn_float_data) {
74 int *int_data = rxn_int_data;
75 double *float_data = rxn_float_data;
84 for (
int i_ind = 0; i_ind <
NUM_REACT_; i_ind++) {
85 for (
int i_dep = 0; i_dep <
NUM_REACT_; i_dep++) {
89 for (
int i_dep = 0; i_dep <
NUM_PROD_; i_dep++) {
108 double *rxn_float_data,
double *rxn_env_data) {
109 int *int_data = rxn_int_data;
110 double *float_data = rxn_float_data;
126 pow(
FC_, (1.0 / (1.0 + pow(log10(kinf) /
N_, 2)))) *
142#ifdef CAMP_USE_SUNDIALS
145 double *rxn_float_data,
double *rxn_env_data,
146 realtype time_step) {
147 int *int_data = rxn_int_data;
148 double *float_data = rxn_float_data;
154 for (
int i_spec = 0; i_spec <
NUM_REACT_; i_spec++)
155 rate *= state[
REACT_(i_spec)];
160 for (
int i_spec = 0; i_spec <
NUM_REACT_; i_spec++, i_dep_var++) {
164 for (
int i_spec = 0; i_spec <
NUM_PROD_; i_spec++, i_dep_var++) {
168 if (-rate *
YIELD_(i_spec) * time_step <= state[
PROD_(i_spec)]) {
188#ifdef CAMP_USE_SUNDIALS
190 int *rxn_int_data,
double *rxn_float_data,
191 double *rxn_env_data, realtype time_step) {
192 int *int_data = rxn_int_data;
193 double *float_data = rxn_float_data;
199 for (
int i_ind = 0; i_ind <
NUM_REACT_; i_ind++) {
202 for (
int i_spec = 0; i_spec <
NUM_REACT_; i_spec++)
203 if (i_ind != i_spec) rate *= state[
REACT_(i_spec)];
205 for (
int i_dep = 0; i_dep <
NUM_REACT_; i_dep++, i_elem++) {
206 if (
JAC_ID_(i_elem) < 0)
continue;
210 for (
int i_dep = 0; i_dep <
NUM_PROD_; i_dep++, i_elem++) {
211 if (
JAC_ID_(i_elem) < 0)
continue;
214 if (-rate * state[
REACT_(i_ind)] *
YIELD_(i_dep) * time_step <=
215 state[
PROD_(i_dep)]) {
232 int *int_data = rxn_int_data;
233 double *float_data = rxn_float_data;
235 printf(
"\n\nTroe reaction\n");
unsigned int jacobian_get_element_id(Jacobian jac, unsigned int dep_id, unsigned int ind_id)
Get an element id in the Jacobian data arrays.
void jacobian_add_value(Jacobian jac, unsigned int elem_id, unsigned int prod_or_loss, long double jac_contribution)
Add a contribution to the Jacobian.
void jacobian_register_element(Jacobian *jac, unsigned int dep_id, unsigned int ind_id)
Adds an element to the sparse matrix.
#define JACOBIAN_PRODUCTION
void rxn_troe_calc_jac_contrib(ModelData *model_data, Jacobian jac, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data, realtype time_step)
Calculate contributions to the Jacobian from this reaction.
void rxn_troe_print(int *rxn_int_data, double *rxn_float_data)
Print the Troe reaction parameters.
void rxn_troe_get_used_jac_elem(int *rxn_int_data, double *rxn_float_data, Jacobian *jac)
Flag Jacobian elements used by this reaction.
void rxn_troe_update_ids(ModelData *model_data, int *deriv_ids, Jacobian jac, int *rxn_int_data, double *rxn_float_data)
Update the time derivative and Jacbobian array indices.
void rxn_troe_update_env_state(ModelData *model_data, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data)
Update reaction data for new environmental conditions.
void rxn_troe_calc_deriv_contrib(ModelData *model_data, TimeDerivative time_deriv, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data, realtype time_step)
Calculate contributions to the time derivative from this reaction.
void time_derivative_add_value(TimeDerivative time_deriv, unsigned int spec_id, long double rate_contribution)
Add a contribution to the time derivative.