CAMP 1.0.0
Chemistry Across Multiple Phases
rxn_ternary_chemical_activation.c
Go to the documentation of this file.
1/* Copyright (C) 2021 Barcelona Supercomputing Center,
2 * University of Illinois at Urbana-Champaign, and
3 * National Center for Atmospheric Research
4 * SPDX-License-Identifier: MIT
5 *
6 * Ternary Chemical Activation reaction solver functions
7 *
8 */
9/** \file
10 * \brief Ternary Chemical Activation reaction solver functions
11 */
12#include <math.h>
13#include <stdio.h>
14#include <stdlib.h>
15#include "../rxns.h"
16
17// TODO Lookup environmental indicies during initialization
18#define TEMPERATURE_K_ env_data[0]
19#define PRESSURE_PA_ env_data[1]
20
21#define NUM_REACT_ int_data[0]
22#define NUM_PROD_ int_data[1]
23#define K0_A_ float_data[0]
24#define K0_B_ float_data[1]
25#define K0_C_ float_data[2]
26#define KINF_A_ float_data[3]
27#define KINF_B_ float_data[4]
28#define KINF_C_ float_data[5]
29#define FC_ float_data[6]
30#define N_ float_data[7]
31#define SCALING_ float_data[8]
32#define CONV_ float_data[9]
33#define RATE_CONSTANT_ (rxn_env_data[0])
34#define NUM_INT_PROP_ 2
35#define NUM_FLOAT_PROP_ 10
36#define REACT_(x) (int_data[NUM_INT_PROP_ + x] - 1)
37#define PROD_(x) (int_data[NUM_INT_PROP_ + NUM_REACT_ + x] - 1)
38#define DERIV_ID_(x) int_data[NUM_INT_PROP_ + NUM_REACT_ + NUM_PROD_ + x]
39#define JAC_ID_(x) int_data[NUM_INT_PROP_ + 2 * (NUM_REACT_ + NUM_PROD_) + x]
40#define YIELD_(x) float_data[NUM_FLOAT_PROP_ + x]
41
42/** \brief Flag Jacobian elements used by this reaction
43 *
44 * \param rxn_int_data Pointer to the reaction integer data
45 * \param rxn_float_data Pointer to the reaction floating-point data
46 * \param jac Jacobian
47 */
49 double *rxn_float_data,
50 Jacobian *jac) {
51 int *int_data = rxn_int_data;
52 double *float_data = rxn_float_data;
53
54 for (int i_ind = 0; i_ind < NUM_REACT_; i_ind++) {
55 for (int i_dep = 0; i_dep < NUM_REACT_; i_dep++) {
56 jacobian_register_element(jac, REACT_(i_dep), REACT_(i_ind));
57 }
58 for (int i_dep = 0; i_dep < NUM_PROD_; i_dep++) {
59 jacobian_register_element(jac, PROD_(i_dep), REACT_(i_ind));
60 }
61 }
62
63 return;
64}
65
66/** \brief Update the time derivative and Jacbobian array indices
67 *
68 * \param model_data Pointer to the model data
69 * \param deriv_ids Id of each state variable in the derivative array
70 * \param jac Jacobian
71 * \param rxn_int_data Pointer to the reaction integer data
72 * \param rxn_float_data Pointer to the reaction floating-point data
73 */
75 int *deriv_ids, Jacobian jac,
76 int *rxn_int_data,
77 double *rxn_float_data) {
78 int *int_data = rxn_int_data;
79 double *float_data = rxn_float_data;
80
81 // Update the time derivative ids
82 for (int i = 0; i < NUM_REACT_; i++) DERIV_ID_(i) = deriv_ids[REACT_(i)];
83 for (int i = 0; i < NUM_PROD_; i++)
84 DERIV_ID_(i + NUM_REACT_) = deriv_ids[PROD_(i)];
85
86 // Update the Jacobian ids
87 int i_jac = 0;
88 for (int i_ind = 0; i_ind < NUM_REACT_; i_ind++) {
89 for (int i_dep = 0; i_dep < NUM_REACT_; i_dep++) {
90 JAC_ID_(i_jac++) =
91 jacobian_get_element_id(jac, REACT_(i_dep), REACT_(i_ind));
92 }
93 for (int i_dep = 0; i_dep < NUM_PROD_; i_dep++) {
94 JAC_ID_(i_jac++) =
95 jacobian_get_element_id(jac, PROD_(i_dep), REACT_(i_ind));
96 }
97 }
98 return;
99}
100
101/** \brief Update reaction data for new environmental conditions
102 *
103 * For Ternary Chemical Activation reaction this only involves recalculating the
104 * rate constant.
105 *
106 * \param model_data Pointer to the model data
107 * \param rxn_int_data Pointer to the reaction integer data
108 * \param rxn_float_data Pointer to the reaction floating-point data
109 * \param rxn_env_data Pointer to the environment-dependent parameters
110 */
112 int *rxn_int_data,
113 double *rxn_float_data,
114 double *rxn_env_data) {
115 int *int_data = rxn_int_data;
116 double *float_data = rxn_float_data;
117 double *env_data = model_data->grid_cell_env;
118
119 // Calculate the rate constant in (#/cc)
120 // k = (k0 / (1 + k0[M]/kinf)) * Fc^(1/(1+(1/N*log(k0[M]/kinf))^2))
121 double conv = CONV_ * PRESSURE_PA_ / TEMPERATURE_K_;
122 double k0 =
123 K0_A_ * (K0_C_ == 0.0 ? 1.0 : exp(K0_C_ / TEMPERATURE_K_)) *
124 (K0_B_ == 0.0 ? 1.0 : pow(TEMPERATURE_K_ / ((double)300.0), K0_B_)) *
125 conv;
126 double kinf =
127 k0 /
128 (KINF_A_ * (KINF_C_ == 0.0 ? 1.0 : exp(KINF_C_ / TEMPERATURE_K_)) *
129 (KINF_B_ == 0.0 ? 1.0 : pow(TEMPERATURE_K_ / ((double)300.0), KINF_B_)));
130 RATE_CONSTANT_ = 1.0e-6 * (k0 / (1.0 + kinf)) *
131 pow(FC_, (1.0 / (1.0 + pow(log10(kinf) / N_, 2)))) *
132 pow(conv, NUM_REACT_ - 1) * SCALING_;
133
134 return;
135}
136
137/** \brief Calculate contributions to the time derivative \f$f(t,y)\f$ from
138 * this reaction.
139 *
140 * \param model_data Pointer to the model data, including the state array
141 * \param time_deriv TimeDerivative object
142 * \param rxn_int_data Pointer to the reaction integer data
143 * \param rxn_float_data Pointer to the reaction floating-point data
144 * \param rxn_env_data Pointer to the environment-dependent parameters
145 * \param time_step Current time step being computed (s)
146 */
147#ifdef CAMP_USE_SUNDIALS
149 ModelData *model_data, TimeDerivative time_deriv, int *rxn_int_data,
150 double *rxn_float_data, double *rxn_env_data, realtype time_step) {
151 int *int_data = rxn_int_data;
152 double *float_data = rxn_float_data;
153 double *state = model_data->grid_cell_state;
154 double *env_data = model_data->grid_cell_env;
155
156 // Calculate the reaction rate
157 long double rate = RATE_CONSTANT_;
158 for (int i_spec = 0; i_spec < NUM_REACT_; i_spec++)
159 rate *= state[REACT_(i_spec)];
160
161 // Add contributions to the time derivative
162 if (rate != ZERO) {
163 int i_dep_var = 0;
164 for (int i_spec = 0; i_spec < NUM_REACT_; i_spec++, i_dep_var++) {
165 if (DERIV_ID_(i_dep_var) < 0) continue;
166 time_derivative_add_value(time_deriv, DERIV_ID_(i_dep_var), -rate);
167 }
168 for (int i_spec = 0; i_spec < NUM_PROD_; i_spec++, i_dep_var++) {
169 if (DERIV_ID_(i_dep_var) < 0) continue;
170 // Negative yields are allowed, but prevented from causing negative
171 // concentrations that lead to solver failures
172 if (-rate * YIELD_(i_spec) * time_step <= state[PROD_(i_spec)]) {
173 time_derivative_add_value(time_deriv, DERIV_ID_(i_dep_var),
174 rate * YIELD_(i_spec));
175 }
176 }
177 }
178
179 return;
180}
181#endif
182
183/** \brief Calculate contributions to the Jacobian from this reaction
184 *
185 * \param model_data Pointer to the model data
186 * \param jac Reaction Jacobian
187 * \param rxn_int_data Pointer to the reaction integer data
188 * \param rxn_float_data Pointer to the reaction floating-point data
189 * \param rxn_env_data Pointer to the environment-dependent parameters
190 * \param time_step Current time step being calculated (s)
191 */
192#ifdef CAMP_USE_SUNDIALS
194 ModelData *model_data, Jacobian jac, int *rxn_int_data,
195 double *rxn_float_data, double *rxn_env_data, realtype time_step) {
196 int *int_data = rxn_int_data;
197 double *float_data = rxn_float_data;
198 double *state = model_data->grid_cell_state;
199 double *env_data = model_data->grid_cell_env;
200
201 // Add contributions to the Jacobian
202 int i_elem = 0;
203 for (int i_ind = 0; i_ind < NUM_REACT_; i_ind++) {
204 // Calculate d_rate / d_i_ind
205 realtype rate = RATE_CONSTANT_;
206 for (int i_spec = 0; i_spec < NUM_REACT_; i_spec++)
207 if (i_ind != i_spec) rate *= state[REACT_(i_spec)];
208
209 for (int i_dep = 0; i_dep < NUM_REACT_; i_dep++, i_elem++) {
210 if (JAC_ID_(i_elem) < 0) continue;
211 jacobian_add_value(jac, (unsigned int)JAC_ID_(i_elem), JACOBIAN_LOSS,
212 rate);
213 }
214 for (int i_dep = 0; i_dep < NUM_PROD_; i_dep++, i_elem++) {
215 if (JAC_ID_(i_elem) < 0) continue;
216 // Negative yields are allowed, but prevented from causing negative
217 // concentrations that lead to solver failures
218 if (-rate * state[REACT_(i_ind)] * YIELD_(i_dep) * time_step <=
219 state[PROD_(i_dep)]) {
220 jacobian_add_value(jac, (unsigned int)JAC_ID_(i_elem),
221 JACOBIAN_PRODUCTION, YIELD_(i_dep) * rate);
222 }
223 }
224 }
225
226 return;
227}
228#endif
229
230/** \brief Print the Ternary Chemical Activation reaction parameters
231 *
232 * \param rxn_int_data Pointer to the reaction integer data
233 * \param rxn_float_data Pointer to the reaction floating-point data
234 */
236 double *rxn_float_data) {
237 int *int_data = rxn_int_data;
238 double *float_data = rxn_float_data;
239
240 printf("\n\nTernary Chemical Activation reaction\n");
241
242 return;
243}
unsigned int jacobian_get_element_id(Jacobian jac, unsigned int dep_id, unsigned int ind_id)
Get an element id in the Jacobian data arrays.
Definition Jacobian.c:200
void jacobian_add_value(Jacobian jac, unsigned int elem_id, unsigned int prod_or_loss, long double jac_contribution)
Add a contribution to the Jacobian.
Definition Jacobian.c:234
void jacobian_register_element(Jacobian *jac, unsigned int dep_id, unsigned int ind_id)
Adds an element to the sparse matrix.
Definition Jacobian.c:105
#define JACOBIAN_LOSS
Definition Jacobian.h:19
#define JACOBIAN_PRODUCTION
Definition Jacobian.h:18
#define ZERO
Definition camp_common.h:42
void rxn_ternary_chemical_activation_calc_jac_contrib(ModelData *model_data, Jacobian jac, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data, realtype time_step)
Calculate contributions to the Jacobian from this reaction.
void rxn_ternary_chemical_activation_print(int *rxn_int_data, double *rxn_float_data)
Print the Ternary Chemical Activation reaction parameters.
void rxn_ternary_chemical_activation_update_env_state(ModelData *model_data, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data)
Update reaction data for new environmental conditions.
void rxn_ternary_chemical_activation_get_used_jac_elem(int *rxn_int_data, double *rxn_float_data, Jacobian *jac)
Flag Jacobian elements used by this reaction.
void rxn_ternary_chemical_activation_update_ids(ModelData *model_data, int *deriv_ids, Jacobian jac, int *rxn_int_data, double *rxn_float_data)
Update the time derivative and Jacbobian array indices.
#define YIELD_(x)
void rxn_ternary_chemical_activation_calc_deriv_contrib(ModelData *model_data, TimeDerivative time_deriv, int *rxn_int_data, double *rxn_float_data, double *rxn_env_data, realtype time_step)
Calculate contributions to the time derivative from this reaction.
#define JAC_ID_(x)
#define REACT_(x)
#define DERIV_ID_(x)
double * grid_cell_env
double * grid_cell_state
void time_derivative_add_value(TimeDerivative time_deriv, unsigned int spec_id, long double rate_contribution)
Add a contribution to the time derivative.