CAMP 1.0.0
Chemistry Across Multiple Phases
Data Types | Modules | Macros | Functions/Subroutines
rxn_CMAQ_H2O2.F90 File Reference

The camp_rxn_CMAQ_H2O2 module. More...

Go to the source code of this file.

Data Types

interface  camp_rxn_cmaq_h2o2::rxn_cmaq_h2o2_t
 Generic test reaction data type. More...
 

Modules

module  camp_rxn_cmaq_h2o2
 The rxn_CMAQ_H2O2_t type and associated functions.
 

Macros

#define NUM_REACT_   this%condensed_data_int(1)
 
#define NUM_PROD_   this%condensed_data_int(2)
 
#define k1_A_   this%condensed_data_real(1)
 
#define k1_B_   this%condensed_data_real(2)
 
#define k1_C_   this%condensed_data_real(3)
 
#define k2_A_   this%condensed_data_real(4)
 
#define k2_B_   this%condensed_data_real(5)
 
#define k2_C_   this%condensed_data_real(6)
 
#define CONV_   this%condensed_data_real(7)
 
#define NUM_INT_PROP_   2
 
#define NUM_REAL_PROP_   7
 
#define NUM_ENV_PARAM_   1
 
#define REACT_(x)   this%condensed_data_int(NUM_INT_PROP_ + x)
 
#define PROD_(x)   this%condensed_data_int(NUM_INT_PROP_ + NUM_REACT_ + x)
 
#define DERIV_ID_(x)   this%condensed_data_int(NUM_INT_PROP_ + NUM_REACT_ + NUM_PROD_ + x)
 
#define JAC_ID_(x)   this%condensed_data_int(NUM_INT_PROP_ + 2*(NUM_REACT_ + NUM_PROD_) + x)
 
#define YIELD_(x)   this%condensed_data_real(NUM_REAL_PROP_ + x)
 

Functions/Subroutines

type(rxn_cmaq_h2o2_t) function, pointer camp_rxn_cmaq_h2o2::constructor ()
 Constructor for CMAQ H2O2 reaction.
 
subroutine camp_rxn_cmaq_h2o2::initialize (this, chem_spec_data, aero_rep, n_cells)
 Initialize the reaction data, validating component data and loading any required information into the condensed data arrays for use during solving.
 
elemental subroutine camp_rxn_cmaq_h2o2::finalize (this)
 Finalize the reaction.
 

Detailed Description

The camp_rxn_CMAQ_H2O2 module.

Definition in file rxn_CMAQ_H2O2.F90.

Macro Definition Documentation

◆ CONV_

#define CONV_   this%condensed_data_real(7)

◆ DERIV_ID_

#define DERIV_ID_ (   x)    this%condensed_data_int(NUM_INT_PROP_ + NUM_REACT_ + NUM_PROD_ + x)

◆ JAC_ID_

#define JAC_ID_ (   x)    this%condensed_data_int(NUM_INT_PROP_ + 2*(NUM_REACT_ + NUM_PROD_) + x)

◆ k1_A_

#define k1_A_   this%condensed_data_real(1)

◆ k1_B_

#define k1_B_   this%condensed_data_real(2)

◆ k1_C_

#define k1_C_   this%condensed_data_real(3)

◆ k2_A_

#define k2_A_   this%condensed_data_real(4)

◆ k2_B_

#define k2_B_   this%condensed_data_real(5)

◆ k2_C_

#define k2_C_   this%condensed_data_real(6)

◆ NUM_ENV_PARAM_

#define NUM_ENV_PARAM_   1

◆ NUM_INT_PROP_

#define NUM_INT_PROP_   2

◆ NUM_PROD_

#define NUM_PROD_   this%condensed_data_int(2)

◆ NUM_REACT_

#define NUM_REACT_   this%condensed_data_int(1)

◆ NUM_REAL_PROP_

#define NUM_REAL_PROP_   7

◆ PROD_

#define PROD_ (   x)    this%condensed_data_int(NUM_INT_PROP_ + NUM_REACT_ + x)

◆ REACT_

#define REACT_ (   x)    this%condensed_data_int(NUM_INT_PROP_ + x)

◆ YIELD_

#define YIELD_ (   x)    this%condensed_data_real(NUM_REAL_PROP_ + x)