PySDM_examples.Spichtinger_et_al_2023.data.simulation_data

 1import numpy as np
 2
 3
 4def saved_simulation_ensemble_mean():
 5
 6    ni_ens_mean = np.array(
 7        [
 8            [0.00000000e00, 0.00000000e00, 0.00000000e00],
 9            [0.00000000e00, 0.00000000e00, 0.00000000e00],
10            [1.62069821e03, 0.00000000e00, 0.00000000e00],
11            [5.25377025e06, 9.75512904e05, 4.51431097e05],
12            [3.67137290e07, 5.45240337e06, 1.53884530e06],
13            [7.96514420e07, 1.13878118e07, 3.26386880e06],
14            [2.19385480e08, 3.62240242e07, 9.00657591e06],
15            [1.00631095e09, 2.34443408e08, 4.90577208e07],
16            [1.73457062e09, 5.20774276e08, 1.16040316e08],
17        ]
18    )
19    T = np.array([196.0, 216.0, 236.0])
20    w = np.array([0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0])
21
22    return T, w, ni_ens_mean
def saved_simulation_ensemble_mean():
 5def saved_simulation_ensemble_mean():
 6
 7    ni_ens_mean = np.array(
 8        [
 9            [0.00000000e00, 0.00000000e00, 0.00000000e00],
10            [0.00000000e00, 0.00000000e00, 0.00000000e00],
11            [1.62069821e03, 0.00000000e00, 0.00000000e00],
12            [5.25377025e06, 9.75512904e05, 4.51431097e05],
13            [3.67137290e07, 5.45240337e06, 1.53884530e06],
14            [7.96514420e07, 1.13878118e07, 3.26386880e06],
15            [2.19385480e08, 3.62240242e07, 9.00657591e06],
16            [1.00631095e09, 2.34443408e08, 4.90577208e07],
17            [1.73457062e09, 5.20774276e08, 1.16040316e08],
18        ]
19    )
20    T = np.array([196.0, 216.0, 236.0])
21    w = np.array([0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0])
22
23    return T, w, ni_ens_mean