PySDM_examples.Spichtinger_et_al_2023.data.simulation_data
1import numpy as np 2 3 4def saved_simulation_ensemble_mean(): 5 6 ni_ens_mean = np.array( 7 [ 8 [0.00000000e00, 0.00000000e00, 0.00000000e00], 9 [0.00000000e00, 0.00000000e00, 0.00000000e00], 10 [1.62069821e03, 0.00000000e00, 0.00000000e00], 11 [5.25377025e06, 9.75512904e05, 4.51431097e05], 12 [3.67137290e07, 5.45240337e06, 1.53884530e06], 13 [7.96514420e07, 1.13878118e07, 3.26386880e06], 14 [2.19385480e08, 3.62240242e07, 9.00657591e06], 15 [1.00631095e09, 2.34443408e08, 4.90577208e07], 16 [1.73457062e09, 5.20774276e08, 1.16040316e08], 17 ] 18 ) 19 T = np.array([196.0, 216.0, 236.0]) 20 w = np.array([0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0]) 21 22 return T, w, ni_ens_mean
def
saved_simulation_ensemble_mean():
5def saved_simulation_ensemble_mean(): 6 7 ni_ens_mean = np.array( 8 [ 9 [0.00000000e00, 0.00000000e00, 0.00000000e00], 10 [0.00000000e00, 0.00000000e00, 0.00000000e00], 11 [1.62069821e03, 0.00000000e00, 0.00000000e00], 12 [5.25377025e06, 9.75512904e05, 4.51431097e05], 13 [3.67137290e07, 5.45240337e06, 1.53884530e06], 14 [7.96514420e07, 1.13878118e07, 3.26386880e06], 15 [2.19385480e08, 3.62240242e07, 9.00657591e06], 16 [1.00631095e09, 2.34443408e08, 4.90577208e07], 17 [1.73457062e09, 5.20774276e08, 1.16040316e08], 18 ] 19 ) 20 T = np.array([196.0, 216.0, 236.0]) 21 w = np.array([0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0]) 22 23 return T, w, ni_ens_mean