PySDM_examples.Bartman_2020_MasterThesis.fig_5_SCIPY_VS_ADAPTIVE
1import os 2 3import matplotlib 4import matplotlib.pyplot as plt 5import numpy as np 6from matplotlib.collections import LineCollection 7from PySDM_examples.Arabas_and_Shima_2017.settings import setups 8from PySDM_examples.Arabas_and_Shima_2017.simulation import Simulation 9 10from PySDM.backends import CPU, GPU 11from PySDM.backends.impl_numba.test_helpers import scipy_ode_condensation_solver 12 13 14def data(n_output, rtols, schemes, setups_num): 15 resultant_data = {} 16 for scheme in schemes: 17 resultant_data[scheme] = {} 18 if scheme == "SciPy": 19 for rtol in rtols: 20 resultant_data[scheme][rtol] = [] 21 for settings_idx in range(setups_num): 22 settings = setups[settings_idx] 23 settings.n_output = n_output 24 simulation = Simulation(settings) 25 scipy_ode_condensation_solver.patch_particulator( 26 simulation.particulator 27 ) 28 results = simulation.run() 29 for rtol in rtols: 30 resultant_data[scheme][rtol].append(results) 31 else: 32 for rtol in rtols: 33 resultant_data[scheme][rtol] = [] 34 for settings_idx in range(setups_num): 35 settings = setups[settings_idx] 36 settings.rtol_x = rtol 37 settings.rtol_thd = rtol 38 settings.n_output = n_output 39 simulation = Simulation( 40 settings, backend=CPU if scheme == "CPU" else GPU 41 ) 42 results = simulation.run() 43 resultant_data[scheme][rtol].append(results) 44 return resultant_data 45 46 47def add_color_line(fig, ax, x, y, z): 48 points = np.array([x, y]).T.reshape(-1, 1, 2) 49 segments = np.concatenate([points[:-1], points[1:]], axis=1) 50 z = np.array(z) 51 vmin = min(np.nanmin(z), np.nanmax(z) / 2) 52 lc = LineCollection( 53 segments, 54 cmap=plt.get_cmap("plasma"), 55 norm=matplotlib.colors.LogNorm(vmax=1, vmin=vmin), 56 ) 57 lc.set_array(z) 58 lc.set_linewidth(3) 59 60 ax.add_collection(lc) 61 fig.colorbar(lc, ax=ax) 62 63 64def plot(plot_data, rtols, schemes, setups_num, show_plot, path=None): 65 _rtol = "$r_{tol}$" 66 67 plt.ioff() 68 fig, axs = plt.subplots( 69 setups_num, len(rtols), sharex=True, sharey=True, figsize=(10, 13) 70 ) 71 for settings_idx in range(setups_num): 72 SCIPY_S = None 73 PySDM_S = None 74 for rtol_idx, _rtol in enumerate(rtols): 75 ax = axs[settings_idx, rtol_idx] 76 for scheme in schemes: 77 datum = plot_data[scheme][_rtol][settings_idx] 78 S = datum["S"] 79 z = datum["z"] 80 dt = datum["dt_cond_min"] 81 if scheme == "SciPy": 82 ax.plot(S, z, label=scheme, color="grey") 83 SCIPY_S = np.array(S) 84 else: 85 add_color_line(fig, ax, S, z, dt) 86 PySDM_S = np.array(S) 87 if SCIPY_S is not None and PySDM_S is not None: 88 mae = np.mean(np.abs(SCIPY_S - PySDM_S)) 89 ax.set_title(f"MAE: {mae:.4E}") 90 ax.set_xlim(-7.5e-3, 7.5e-3) 91 ax.set_ylim(0, 180) 92 ax.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator()) 93 ax.grid() 94 plt.setp(ax.get_xticklabels(), rotation=30, horizontalalignment="right") 95 for i, ax in enumerate(axs[:, 0]): 96 ax.set(ylabel=r"$\bf{settings: " + str(i) + "}$\ndisplacement [m]") 97 for i, ax in enumerate(axs[-1, :]): 98 ax.set(xlabel="supersaturation\n" + r"$\bf{r_{tol}: " + str(rtols[i]) + "}$") 99 100 plt.tight_layout() 101 102 if path is not None: 103 plt.savefig(path + ".pdf", format="pdf") 104 if show_plot: 105 plt.show() 106 107 108def main(save=None, show_plot=True): 109 rtols = [1e-7, 1e-11] 110 schemes = ["CPU", "SciPy"] 111 setups_num = len(setups) 112 input_data = data(80, rtols, schemes, setups_num) 113 plot(input_data, rtols, schemes, setups_num, show_plot, save) 114 115 116if __name__ == "__main__": 117 main("SCIPY_VS_ADAPTIVE", show_plot="CI" not in os.environ)
def
data(n_output, rtols, schemes, setups_num):
15def data(n_output, rtols, schemes, setups_num): 16 resultant_data = {} 17 for scheme in schemes: 18 resultant_data[scheme] = {} 19 if scheme == "SciPy": 20 for rtol in rtols: 21 resultant_data[scheme][rtol] = [] 22 for settings_idx in range(setups_num): 23 settings = setups[settings_idx] 24 settings.n_output = n_output 25 simulation = Simulation(settings) 26 scipy_ode_condensation_solver.patch_particulator( 27 simulation.particulator 28 ) 29 results = simulation.run() 30 for rtol in rtols: 31 resultant_data[scheme][rtol].append(results) 32 else: 33 for rtol in rtols: 34 resultant_data[scheme][rtol] = [] 35 for settings_idx in range(setups_num): 36 settings = setups[settings_idx] 37 settings.rtol_x = rtol 38 settings.rtol_thd = rtol 39 settings.n_output = n_output 40 simulation = Simulation( 41 settings, backend=CPU if scheme == "CPU" else GPU 42 ) 43 results = simulation.run() 44 resultant_data[scheme][rtol].append(results) 45 return resultant_data
def
add_color_line(fig, ax, x, y, z):
48def add_color_line(fig, ax, x, y, z): 49 points = np.array([x, y]).T.reshape(-1, 1, 2) 50 segments = np.concatenate([points[:-1], points[1:]], axis=1) 51 z = np.array(z) 52 vmin = min(np.nanmin(z), np.nanmax(z) / 2) 53 lc = LineCollection( 54 segments, 55 cmap=plt.get_cmap("plasma"), 56 norm=matplotlib.colors.LogNorm(vmax=1, vmin=vmin), 57 ) 58 lc.set_array(z) 59 lc.set_linewidth(3) 60 61 ax.add_collection(lc) 62 fig.colorbar(lc, ax=ax)
def
plot(plot_data, rtols, schemes, setups_num, show_plot, path=None):
65def plot(plot_data, rtols, schemes, setups_num, show_plot, path=None): 66 _rtol = "$r_{tol}$" 67 68 plt.ioff() 69 fig, axs = plt.subplots( 70 setups_num, len(rtols), sharex=True, sharey=True, figsize=(10, 13) 71 ) 72 for settings_idx in range(setups_num): 73 SCIPY_S = None 74 PySDM_S = None 75 for rtol_idx, _rtol in enumerate(rtols): 76 ax = axs[settings_idx, rtol_idx] 77 for scheme in schemes: 78 datum = plot_data[scheme][_rtol][settings_idx] 79 S = datum["S"] 80 z = datum["z"] 81 dt = datum["dt_cond_min"] 82 if scheme == "SciPy": 83 ax.plot(S, z, label=scheme, color="grey") 84 SCIPY_S = np.array(S) 85 else: 86 add_color_line(fig, ax, S, z, dt) 87 PySDM_S = np.array(S) 88 if SCIPY_S is not None and PySDM_S is not None: 89 mae = np.mean(np.abs(SCIPY_S - PySDM_S)) 90 ax.set_title(f"MAE: {mae:.4E}") 91 ax.set_xlim(-7.5e-3, 7.5e-3) 92 ax.set_ylim(0, 180) 93 ax.get_xaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator()) 94 ax.grid() 95 plt.setp(ax.get_xticklabels(), rotation=30, horizontalalignment="right") 96 for i, ax in enumerate(axs[:, 0]): 97 ax.set(ylabel=r"$\bf{settings: " + str(i) + "}$\ndisplacement [m]") 98 for i, ax in enumerate(axs[-1, :]): 99 ax.set(xlabel="supersaturation\n" + r"$\bf{r_{tol}: " + str(rtols[i]) + "}$") 100 101 plt.tight_layout() 102 103 if path is not None: 104 plt.savefig(path + ".pdf", format="pdf") 105 if show_plot: 106 plt.show()
def
main(save=None, show_plot=True):