PySDM_examples.Alpert_and_Knopf_2016.table_2

 1from PySDM_examples.Alpert_and_Knopf_2016.table import Table
 2
 3from PySDM.initialisation.spectra import Lognormal
 4from PySDM.physics import si
 5
 6
 7class Table2(Table):
 8    def label(self, key):
 9        return f"r={self[key]['cooling_rate']/(si.K/si.min)} K/min"
10
11    def __init__(self, *, volume=1 * si.cm**3):
12        super().__init__(
13            volume=volume,
14            data={
15                "Cr1": {
16                    "ISA": Lognormal(
17                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
18                    ),
19                    "cooling_rate": 0.5 * si.K / si.min,
20                    "color": "orange",
21                    "ABIFM_c": -10.67,
22                    "ABIFM_m": 54.48,
23                },
24                "Cr2": {
25                    "ISA": Lognormal(
26                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
27                    ),
28                    "cooling_rate": 5 * si.K / si.min,
29                    "color": "blue",
30                    "ABIFM_c": -10.67,
31                    "ABIFM_m": 54.48,
32                },
33                "CrHE1": {
34                    "ISA": Lognormal(
35                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
36                    ),
37                    "cooling_rate": 0.2 * si.K / si.min,
38                    "color": "orange",
39                    "ABIFM_c": -12.98,
40                    "ABIFM_m": 122.83,
41                },
42                "CrHE2": {
43                    "ISA": Lognormal(
44                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
45                    ),
46                    "cooling_rate": 2 * si.K / si.min,
47                    "color": "blue",
48                    "ABIFM_c": -12.98,
49                    "ABIFM_m": 122.83,
50                },
51            },
52        )
 8class Table2(Table):
 9    def label(self, key):
10        return f"r={self[key]['cooling_rate']/(si.K/si.min)} K/min"
11
12    def __init__(self, *, volume=1 * si.cm**3):
13        super().__init__(
14            volume=volume,
15            data={
16                "Cr1": {
17                    "ISA": Lognormal(
18                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
19                    ),
20                    "cooling_rate": 0.5 * si.K / si.min,
21                    "color": "orange",
22                    "ABIFM_c": -10.67,
23                    "ABIFM_m": 54.48,
24                },
25                "Cr2": {
26                    "ISA": Lognormal(
27                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
28                    ),
29                    "cooling_rate": 5 * si.K / si.min,
30                    "color": "blue",
31                    "ABIFM_c": -10.67,
32                    "ABIFM_m": 54.48,
33                },
34                "CrHE1": {
35                    "ISA": Lognormal(
36                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
37                    ),
38                    "cooling_rate": 0.2 * si.K / si.min,
39                    "color": "orange",
40                    "ABIFM_c": -12.98,
41                    "ABIFM_m": 122.83,
42                },
43                "CrHE2": {
44                    "ISA": Lognormal(
45                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
46                    ),
47                    "cooling_rate": 2 * si.K / si.min,
48                    "color": "blue",
49                    "ABIFM_c": -12.98,
50                    "ABIFM_m": 122.83,
51                },
52            },
53        )
Table2(*, volume=1.0000000000000002e-06)
12    def __init__(self, *, volume=1 * si.cm**3):
13        super().__init__(
14            volume=volume,
15            data={
16                "Cr1": {
17                    "ISA": Lognormal(
18                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
19                    ),
20                    "cooling_rate": 0.5 * si.K / si.min,
21                    "color": "orange",
22                    "ABIFM_c": -10.67,
23                    "ABIFM_m": 54.48,
24                },
25                "Cr2": {
26                    "ISA": Lognormal(
27                        norm_factor=1000 / volume, s_geom=10, m_mode=1e-5 * si.cm**2
28                    ),
29                    "cooling_rate": 5 * si.K / si.min,
30                    "color": "blue",
31                    "ABIFM_c": -10.67,
32                    "ABIFM_m": 54.48,
33                },
34                "CrHE1": {
35                    "ISA": Lognormal(
36                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
37                    ),
38                    "cooling_rate": 0.2 * si.K / si.min,
39                    "color": "orange",
40                    "ABIFM_c": -12.98,
41                    "ABIFM_m": 122.83,
42                },
43                "CrHE2": {
44                    "ISA": Lognormal(
45                        norm_factor=40 / volume, s_geom=8.5, m_mode=2.1e-2 * si.cm**2
46                    ),
47                    "cooling_rate": 2 * si.K / si.min,
48                    "color": "blue",
49                    "ABIFM_c": -12.98,
50                    "ABIFM_m": 122.83,
51                },
52            },
53        )
def label(self, key):
 9    def label(self, key):
10        return f"r={self[key]['cooling_rate']/(si.K/si.min)} K/min"